Інноваційне використання стовбурових клітин у комплексному лікуванні пацієнтів із синдромом діабетичної стопи
ARTICLE PDF

Ключові слова

синдром діабетичної стопи, стовбурові клітини, інноваційне використання, наукові публікації, огляд

Як цитувати

TronkoМ., Butenko, G., Bolgarska, S., Kovzun, O., Nemtynov, P., Orlenko, V., Pasteur, I., Sokolova, L., & Salutin, R. (2018). Інноваційне використання стовбурових клітин у комплексному лікуванні пацієнтів із синдромом діабетичної стопи. Ендокринологія | Endokrynologia, 23(3), 251-268. вилучено із https://endokrynologia.com.ua/index.php/journal/article/view/22

Анотація

Представлено огляд наукових публікацій із питань інноваційного використання стовбурових клітин у комплексному лікуванні пацієнтів із синдромом діабетичної стопи.

ARTICLE PDF

Посилання

1. https://www.idf.org/e-library/epidemiology-research/diabetesatlas/134-idf-diabetes‑2016.
2. Довідник основних показників діяльності ендокринологічної служби України за 2016 рік. Ендокринологія. 2017;22(1) додаток 1 (Directory of main indicators of the endocrinology service activity of Ukraine for 2016. Endokrynologia. 2017;22(1) suppl 1).
3. Аметов АС. Перспективы развития диабетологии. Тер архив. 2005;(10):5-9 (Ametov AS. Perspectives of development of diabetology. Terapeutic archive. 2005;(10):5-9).
4. Yechoor V, Chan L. Minireview: beta-cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation. Mol Endocrinol. 2010 Aug; 24(8):1501-11.
5. Cao Y, Gang X, Sun C, Wang G. Mesenchymal stem cells improve healing of diabetic foot ulcer. J Diabetes Res. 2017;2017:9328347.
6. Тронько НД, Соколова ЛК, Ковзун ЕИ, Пастер ИП. Инсулино-терапия: вчера, сегодня, завтра // Киев: Медкнига, 2014. — 192 с. (Tronko ND, Sokolova LK, Kovzun EI, Pasteur IP. Insulinotherapy: yesterday, today, tomorrow // Kyiv: Medbook, 2014. — 192 p.).
7. da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity f mesenchymal stem cells. Stem Cells. 2008 Sep;26(9):2287-99.
8. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.
9. Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol. 2003 Apr;139(4):510-6.
10. Wu SC, Marston W, Armstrong DG. Wound care: the role of advanced wound healing technologies. J Vasc Surg. 2010 Sep;52(3 Suppl):59S‑66S.
11. Yamaguchi Y, Yoshida S, Sumikawa Y, Kubo T, Hosokawa K, Ozawa K, et al. Rapid healing of intractable diabetic foot ulcers with exposed bones following a novel therapy of exposing bone marrow cells and then grafting epidermal sheets. Br J Dermatol. 2004 Nov;151(5):1019-28.
12. Gu C, Huang S, Gao D, Wu Y, Li J, Ma K, et al. Angiogenic effect of mesenchymal stem cells as a therapeutic target for enhancing diabetic wound healing. Int J Low Extrem Wounds. 2014 Jun;13(2):88-93.
13. Wu Q, Chen B, Liang Z. Mesenchymal stem cells as a prospective therapy for the diabetic foot. Stem Cells Int. 2016;2016:4612167.
14. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007 Nov;213(2):341-7.
15. Shin L, Peterson DA. Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl Med. 2013 Jan;2(1):33-42.
16. Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int. 2006 Sep;30(9):681-7.
17. Toda A, Okabe M, Yoshida T, Nikaido T. The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci. 2007 Nov;105(3):215-28.
18. Wang H, Chen L, Liu Y, Luo B, Xie N, Tan T, et al. Implantation of placenta-derived mesenchymal stem cells accelerates murine dermal wound closure through immunomodulation. Am J Transl Res. 2016 Nov;8(11):4912-4921.
19. Kong P, Xie X, Li F, Liu Y, Lu Y. Placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki (GK) rats. Biochem Biophys Res Commun. 2013 Aug;438(2):410-9.
20. Kadam S, Muthyala S, Nair P, Bhonde R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev Diabet Stud. 2010 Summer;7(2):168-82.
21. Kadam SS, Bhonde RR. Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells. Islets 2010 Mar-Apr;2(2):112-20.
22. Kadam S, Sudhakar M, Nair PD, Bhonde RR. Reversal of experimental diabetes in mice by transplantation of neoislets generated from human amnion derived mesenchymal stem cells using immunoisolatory macrocapsules. Cytotherapy 2010 Dec;12(8):982-91.
23. Koblas T, Harman SM, Saudek F. The application of umbilical cord blood cells in the treatment of diabetes mellitus. Rev Diabet Stud. 2005 Winter;2(4):228-34.
24. Grewal SS, Barker JN, Davies SM, Wagner JE. Unrelated donor hematopoietic cell transplantation: marrow or umbilical cord blood? Blood. 2003 Jun;101(11):4233-44.
25. El-Mesallamy HO, Diab MR, Hamdy NM, Dardir SM. Cell-based regenerative strategies for treatment of diabetic skin wounds, a comparative study between human umbilical cord blood-mononuclear cells and calves’ blood haemodialysate. PLoS One. 2014 Mar;9(3): e89853.
26. Pessina A, Eletti B, Croera C, Savalli N, Diodovich C, Gribaldo L. Pancreas developing markers expressed on human mononucleated umbilical cord blood cells. Biochem Biophys Res Commun. 2004 Oct;323(1):315-22.
27. Nwanjo H, Oze G, Okafor M, Nwosu D, Nwankpa P. Protective role of phyllantus niuri extract on serum lipid profiles and oxidative stress in hepatocytes of diabetic rats. Afr J Biotech. 2007 6:1744-1749. Available from: https://www.ajol.info/index.php/ajb/article/view/57772.
28. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, et al. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg. 2008 Mar;121(3):860-77.
29. Chen HK, Hung HF, Shyu KG, Wang BW, Sheu JR, Liang YJ, et al. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest. 2005 Nov;35(11):677-86.
30. Shi C, Cheng T, Su Y, Mai Y, Qu J, Lou S, et al. Transplantation of dermal multipotent cells promotes survival and wound healing in rats with combined radiation and wound injury. Radiat Res. 2004 Jul;162(1):56-63.
31. Xia N, Xu JM, Zhao N, Zhao QS, Li M, Cheng ZF. Human mesenchymal stem cells improve the neurodegeneration of femoral nerve in a diabetic foot ulceration rats. Neurosci Lett 2015 Jun;597:84-9.
32. Whiteley J, Bielecki R, Li M, Chua S, Ward MR, Yamanaka N, et al. An expanded population of CD34+ cells from frozen banked umbilical cord blood demonstrate tissue repair mechanisms of mesenchymal stromal cells and circulating angiogenic cells in an ischemic hind limb model. Stem Cell Rev. 2014 Jun;10(3):338-50.
33. Elsharawy MA, Naim M, Greish S. Human CD34+ stem cells promote healing of diabetic foot ulcers in rats. Interact Cardiovasc Thorac Surg. 2012 Mar;14(3):288-93.
34. Zhao QS, Xia N, Zhao N, Li M, Bi CL, Zhu Q, et al. Localization of human mesenchymal stem cells from umbilical cord blood and their role in repair of diabetic foot ulcers in rats. Int J Biol Sci. 2013 Dec;10(1):80-9.
35. Shen WC, Liang CJ, Wu VC, Wang SH, Young GH, Lai IR, et al. Endothelial progenitor cells derived from Wharton’s jelly of the umbilical cord reduces ischemia-induced hind limb injury in diabetic mice by inducing HIF‑1α/IL‑8 expression. Stem Cells Dev. 2013 May;22(9):1408-18.
36. Bongso A, Fong CY. The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Rev. 2013 Apr;9(2):226-40.
37. Rossi D, Pianta S, Magatti M, Sedlmayr P, Parolini O. Characterization of the conditioned medium from amniotic membrane cells: prostaglandins as key effectors of its immunomodulatory activity. PLoS One. 2012;7(10): e46956.
38. Maxson S, Lopez EA, Yoo D, Danilkovitch-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl Med. 2012 Feb;1(2):142-9.
39. Mamede AC., Carvalho MJ., Abrantes AM., Laranjo M., Maia CJ., Botelho MF. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res. 2012 Aug;349(2):447-58.
40. Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci. 2004 May;359(1445):839-50.
41. Jackson WM., Nesti LJ., Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther. 2012 May;3(3):20.
42. Banas RA., Trumpower C., Bentlejewski C., Marshall V., Sing G., Zeevi A. Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Hum Immunol. 2008 Jun;69(6):321-8.
43. Carr MC. Biology of human trophoblast. Calif Med. 1967 Oct;107(4):338-43.
44. Davis JW. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J 1910;15:307. Available from: https://babel.hathitrust.org/cgi/pt?id=mdp.39015035863417; view=1up; seq=327
45. Kesting MR, Wolff KD, Hohlweg-Majert B, Steinstraesser L. The role of allogenic amniotic membrane in burn treatment. J Burn Care Res. 2008 Nov-Dec;29 (6):907-16.
46. Gruss JS, Jirsch DW. Human amniotic membrane: a versatile wound dressing. Can Med Assoc J. 1978 May;118(10):1237-46.
47. Singh R, Chouhan US, Purohit S, Gupta P, Kumar P, Kumar A, et al. Radiation processed amniotic membranes in the treatment of non-healing ulcers of different etiologies. Cell Tissue Bank. 2004;5(2):129-34.
48. Litwiniuk M, Grzela T. Amniotic membrane: new concepts for an old dressing. Wound Repair Regen. 2014 Jul-Aug;22(4):451-6.
49. Koob TJ, Lim JJ, Massee M, Zabek N, Rennert R, Gurtner G, et al. Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration. Vasc Cell. 2014 May;6:10.
50. Koob TJ, Rennert R, Zabek N, Massee M, Lim JJ, Temenoff JS, et al. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J 2013 Oct;10(5):493-500.
51. Quingling Zhong, Dewu Liu, Fanrong Liu. Amniotic membrane loading epidermal stem cells accelerate impaired wound healing in diabetic rats. Advanced Material Research. Vol 214, P 455-460 Available from: https://doi.org/10.4028/www.scientific.net/AMR.214.455.
52. Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 2009 Jan;30(1):2-10.
53. Bernardi S, Severini GM, Zauli G, Secchiero P. Cell-based therapies for diabetic complications. Exp Diabetes Res. 2012;2012:872504.
54. Dubský M, Jirkovská A, Bem R, Fejfarova V, Pagacova L, Nemcová A, et al. Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia. Cytotherapy. 2014 Dec;16(12):1733-8.
55. Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologoustransplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005 Sep;28(9):2155-60.
56. Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000 May;95(10):3106-12.
57. Comerota AJ, Link A, Douville J, Burchardt ER. Upper extremity ischemia treated with tissue repair cells from adult bone marrow. J Vasc Surg. 2010 Sep;52(3):723-9.
58. Wu Y, Zhao RC, Tredget EE. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells. 2010 May;28(5):905-15.
59. Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, Pérez-Camacho I, Marcos-Sánchez F, Hmadcha A, et al. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant. 2011;20(10):1629-39.
60. Kirana S, Stratmann B, Prante C, Prohaska W, Koerperich H, Lammers D, et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract. 2012 Apr;66(4):384-93.
61. Procházka V, Gumulec J, Jalůvka F, Salounová D, Jonszta T, Czerný D, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19(11):1413-24.
62. Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev. 2013 Jul;29(5):369-76.
63. Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC. argeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res. 2009 Oct;12(5):359-66.
64. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18(3):371-80.
65. Vojtassák J, Danisovic L, Kubes M, Bakos D, Jarábek L, Ulicná M, et al. Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett. 2006 Dec;27 Suppl 2:134-7.
66. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011 Apr;92(1):26-36.
67. Roura S, Pujal JM, Gálvez-Montón C, Bayes-Genis A. The role and potential of umbilical cord blood in an era of new therapies: a review. Stem Cell Res Ther. 2015 Jul;6:123.
68. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008 Feb;26(2):300-11.
69. Bloomgarden ZT. The diabetic foot. Diabetes Care. 2008 Feb;31(2):372-6.
70. Qin HL, Zhu XH, Zhang B, Zhou L, Wang WY. Clinical evaluation of human umbilical cord mesenchymal stem cell transplantation after angioplasty for diabetic foot. Exp Clin Endocrinol Diabetes. 2016 Sep;124(8):497-503.
71. Miyajima S, Shirai A, Yamamoto S, Okada N, Matsushita T. Risk factors for major limb amputations in diabetic foot gangrene patients. Diabetes Res Clin Pract. 2006 Mar;71(3):272-9.
72. Forbes J, Fetterolf DE. Dehydrated amniotic membrane allografts for the treatment of chronic wounds: a case series. J Wound Care. 2012 Jun;21(6):290,292,294-296.
73. Sheikh ES, Sheikh ES, Fetterolf DE. Use of dehydrated human amniotic membrane allografts to promote healing in patients with refractory non healing wounds. Int Wound J. 2014 Dec;11(6):711-7.
74. Shah AP. Using amniotic membrane allografts in the treatment of neuropathic foot ulcers. J Am Podiatr Med Assoc. 2014 Mar;104(2):198-202.
75. Regulski M, Jacobstein DA, Petranto RD, Migliori VJ, Nair G, Pfeiffer D. A retrospective analysis of a human cellular repair matrix for the treatment of chronic wounds. Ostomy Wound Manage. 2013 Dec;59(12):38-43.
76. ClinicalTrials.gov / http://www.clinicaltrials.gov.
77. Fotino C, Ricordi C, Lauriola V, Alejandro R, Pileggi A. Bone marrow-derived stem cell transplantation for the treatment of insulindependent diabetes. Rev Diabet Stud. 2010 Summer;7(2):144-57.
78. Brantley JN, Verla TD. Use of Placental Membranes for the Treatment of Chronic Diabetic Foot Ulcers. Advances in Wound Care, Vol. 4 (9): 545-559. DOI: 10.1089/wound.2015.0634
79. Wu SC, Pollak R, Frykberg RG, Zhou W, Karnoub M, Jankovic V, Fischkoff SA, Chitkara D. Safety and efficacy of intramuscular human placenta-derived mesenchymal stromal-like cells (cenplacel [PDA‑002]) in patients who have a diabetic foot ulcer with peripheral arterial disease. Int Wound J 2017; doi: 10.1111/iwj.12715
80. Melmed GY, Pandak WM, Casey К, Abraham В, Valentine J, Schwartz D, Awais D, Bassan I, Lichtiger S, Sands B, Hanauer S, Richards R, Oikonomou I, Parekh N, Targan S, Johnson K, Hariri R, Fischkoff S. Human Placenta-derived Cells (PDA‑001) for the Treatment of Moderate-to-severe Crohn’s Disease: A Phase 1b/2a Study. Inflamm Bowel Dis 2015;21:1809-1816
81. Baughman RP, Culver DA, Jankovi V, Fischkoff S, Brockway G, Lower EE. Placenta-derived mesenchymal-like cells (PDA‑001) as therapy for chronic pulmonary sarcoidosis: a phase 1 study. Sarcoidosis Vasculitis And Diffuse Lung Diseases 2015; 32; 106-114.
82. Lavery LA, Fulmer J, Shebetka KA, Regulski M, Vayser D, Fried D, Kashefsky H, Owings TM, Nadarajah J, The Grafix Diabetic Foot Ulcer Study Group. The efficacy and safety of Grafix® for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J 2014; 11:554-560.
Creative Commons License

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.

Завантаження

Дані завантаження ще не доступні.