Клінічні прояви синдрому пост-COVID-19
pdf

Ключові слова

синдром пост-COVID‑19, патогенез, діагностика, клініка, лікування.

Як цитувати

Tronko, M., Orlenko, V., Kurinna, Y., & Ivaskiva, K. (2021). Клінічні прояви синдрому пост-COVID-19. Ендокринологія | Endokrynologia, 26(3), 248-262. https://doi.org/10.31793/1680-1466.2021.26-3.248

Анотація

На сьогодні пандемія COVID‑19 триває вже близько двох років. Хоча знання фахівців значно покращились у питаннях профілактики та лікування важких форм захворювання, патогенез та лікування синдрому пост-COVID‑19 залишаються актуальними питаннями в медичній та науковій спільнотах. Актуальність проблеми полягає в значному поширенні цього стану серед перехворілих, зниженні якості життя пацієнтів, нестачі знань про частоту, механізми перебігу та причини віддалених наслідків, нечітких уявленнях стосовно підходів до діагностики та лікування, а також відсутності нормативних документів щодо ведення таких пацієнтів. У серпні 2020 року британськими дослідниками вперше було запропоновано термін пост-COVID‑19. Наявні дані свідчать про значні відмінності в епідеміологічних оцінках поширеності синдрому пост-COVID‑19 через відмінності в методах відбору, періодах спостереження та розмірах вибірок. Частота синдрому пост-COVID‑19 оцінюється в 10-35%, тоді як для госпіталізованих пацієнтів вона може досягати й 85%. Втомлюваність є найпоширенішим симптомом, про який повідомляється в 17,5-72,0% випадків після перенесеного COVID‑19, потім услід за задишкою, частота якої становить 10-40%, виникають психічні проблеми, біль у грудях, нюхова і смакова дисфункція, що зустрічаються відповідно до 26, 22 та 11% реконвалесцентів. Більше однієї третини пацієнтів із синдромом пост-COVID‑19 мають вже наявні супутні захворювання, найчастіше зустрічаються гіпертонія та цукровий діабет. Опубліковані на сьогодні дані свідчать про те, що більшість пацієнтів із синдромом пост-COVID‑19 мають хороший прогноз без подальших ускладнень та летальних наслідків. Більшість досліджень досі зосереджувалися на симптомах, пов’язаних із синдромом пост-COVID‑19, а не на дисфункції органів. В огляді представлено аналіз досліджень щодо визначення синдрому пост-COVID‑19, вивчення впливу перенесеної інфекції на різні системи органів та надано основні потенційні механізми розвитку ускладнень. Особлива увага приділена наслідкам перенесеного COVID‑19 з боку ендокринних органів. Запропоновані рекомендації щодо обстеження і ведення пацієнтів із синдромом пост-COVID‑19.

https://doi.org/10.31793/1680-1466.2021.26-3.248
pdf

Посилання

Ouassou H, Kharchoufa L, Bouhrim M, Daoudi NE, Imtara H, Bencheikh N, et al. The pathogenesis of coronavirus disease 2019 (COVID‑19): evaluation and prevention. J Immunol Res. 2020 Jul 10;2020:1357983. doi: 10.1155/2020/1357983.

World Health Organization. Rolling updates on coronavirus disease (COVID‑19) 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus‑2019/events-as-theyhappen [Accessed 25th Sept 2021].

WHO. Coronavirus disease (COVID‑19). Available from: https://covid19.who.int/?gclid=EAIaIQobChMI_Iat_rjN7gIVDbwYCh-3WXQAZEAAYASAAEgL28_D_BwE [Accessed 25th Sept 2021].

WHO: Ukraine. Coronavirus disease (COVID‑19). Available from: https://covid19.who.int/region/euro/country/ua [Accessed 25th Sept 2021].

WHO. Clinical management of COVID‑19. Available from: https://www.who.int/publications/i/item/clinical-managementof-covid‑19 [Accessed 25th Sept 2021].

Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L. Management of post-acute covid‑19 in primary care. BMJ. 2020 Aug 11;370: m3026. doi: 10.1136/bmj.m3026.

Venkatesan P. NICE guideline on long COVID. Lancet Respir Med. 2021 Feb;9(2):129. doi: 10.1016/S2213-2600(21)00031-X. 8. Amenta EM, Spallone A, Rodriguez-Barradas MC, El Sahly HM, Atmar RL, Kulkarni PA. Postacute COVID‑19: An overview and approach to classification. Open Forum Infect Dis. 2020 Oct 21;7(12): ofaa509. doi: 10.1093/ofid/ofaa509.

Xiao AT, Tong YX, Zhang S. Profile of RT-PCR for SARS-CoV‑2: a preliminary study from 56 COVID‑19 patients. Clin Infect Dis. 2020 Nov 19;71(16):2249-51. doi: 10.1093/cid/ciaa460.

Centers for Disease Control and Prevention. Duration of isolation and precautions for adults with COVID‑19. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/durationisolation. html [Accessed 25th Sept 2021].

Noh JY, Yoon JG, Seong H, Choi WS, Sohn JW, Cheong HJ, et al. Asymptomatic infection and atypical manifestations of COVID‑19: Comparison of viral shedding duration. J Infect. 2020 Nov;81(5):816-46. doi: 10.1016/j.jinf.2020.05.035.

Carfì A, Bernabei R, Landi F, for the Gemelli Against COVID‑19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID‑19. JAMA. 2020;324(6):603-5. doi:10.1001/jama.2020.

Halpin SJ, McIvor C, Whyatt G, Adams A, Harvey O, McLean L, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID‑19 infection: A cross-sectional evaluation. J Med Virol. 2021 Feb;93(2):1013-22. doi: 10.1002/jmv.26368.

Garrigues E, Janvier P, Kherabi Y, Le Bot A, Hamon A, Gouze H, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID‑19. J Infect. 2020 Dec;81(6): e4-6. doi: 10.1016/j.jinf.2020.08.029.

Tenforde MW, Kim SS, Lindsell CJ, Billig Rose E, Shapiro NI, Files DC, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID‑19 in a Multistate Health Care Systems Network — United States, March-June 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 31;69(30):993-8. doi: 10.15585/mmwr.mm6930e1.

Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID‑19): A Review. JAMA. 2020;324(8):782-93. doi:10.1001/jama.2020.12839.

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID‑19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-42. doi:10.1001/jama.2020.2648.

Wang D, Hu B, Hu C, et al. Clinical characteristics of hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. doi:10.1001/jama.2020.1585.

Mo X, Jian W, Su Z, Chen M, Peng H, Peng P, et al. Abnormal pulmonary function in COVID‑19 patients at time of hospital discharge. Eur Respir J. 2020 Jun 18;55(6):2001217. doi: 10.1183/13993003.01217-2020.

Fumagalli A, Misuraca C, Bianchi A, Borsa N, Limonta S, Maggiolini S, et al. Pulmonary function in patients surviving to COVID‑19 pneumonia. Infection. 2021 Feb;49(1):153-7. doi: 10.1007/s15010-020-01474-9.

van den Borst B, Peters JB, Brink M, Schoon Y, Bleeker-Rovers CP, Schers H, et al. Comprehensive health assessment 3 months after recovery from acute coronavirus disease 2019 (COVID‑19). Clin Infect Dis. 2021 Sep 7;73(5): e1089-98. doi: 10.1093/cid/ciaa1750.

Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, Kang L, et al. 6-month consequences of COVID‑19 in patients discharged from hospital: a cohort study. Lancet. 2021 Jan 16;397(10270):220-32. doi: 10.1016/S0140-6736(20)32656-8.

Bellan M, Soddu D, Balbo PE, Baricich A, Zeppegno P, Avanzi GC et al. Respiratory and psychophysical sequelae among patients with COVID‑19 four months after hospital discharge. JAMA Netw Open. 2021 Jan 4;4(1): e2036142. doi: 10.1001/ jamanetworkopen.2020.36142.

Han X, Fan Y, Alwalid O, Li N, Jia X, Yuan M, et al. Sixmonth follow-up chest CT findings after severe COVID‑19 pneumonia. Radiology. 2021 Apr;299(1): E177-86. doi: 10.1148/ radiol.2021203153.

Truffaut L, Demey L, Bruyneel AV, Roman A, Alard S, De Vos N, et al. Post-discharge critical COVID‑19 lung function related to severity of radiologic lung involvement at admission. Respir Res.

Jan 21;22(1):29. doi: 10.1186/s12931-021-01625-y.

Liu D, Zhang W, Pan F, Li L, Yang L, Zheng D, et al. The pulmonary sequalae in discharged patients with COVID‑19: a short-term observational study. Respir Res. 2020 May 24;21(1):125. doi:10.1186/s12931-020-01385-1.

Marvisi M, Ferrozzi F, Balzarini L, Mancini C, Ramponi S, Uccelli M. First report on clinical and radiological features of COVID‑19 pneumonitis in a Caucasian population: Factors predicting fibrotic evolution. Int J Infect Dis. 2020 Oct;99:485-8. doi: 10.1016/j.ijid.2020.08.054.

Wei J, Yang H, Lei P, Fan B, Qiu Y, Zeng B, et al. Analysis of thinsection CT in patients with coronavirus disease (COVID‑19) after hospital discharge. J Xray Sci Technol. 2020;28(3):383-9. doi: 10.3233/XST‑200685.

Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered From coronavirus disease 2019 (COVID‑19). JAMA Cardiol. 2020 Nov 1;5(11):1265-73. doi: 10.1001/jamacardio.2020.3557.

Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID‑19. Thromb Res. 2020 Jul;191:145-7. doi: 10.1016/j. thromres.2020.04.013.

Patell R, Bogue T, Koshy A, Bindal P, Merrill M, Aird WC, et al. Postdischarge thrombosis and hemorrhage in patients with COVID‑19. Blood. 2020 Sep 10;136(11):1342-6. doi: 10.1182/ blood.2020007938.

Schulman S, Kearon C; Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J

Thromb Haemost. 2005 Apr;3(4):692-4. doi: 10.1111/j.1538-7836.2005.01204.x.

Goldhaber SZ, Leizorovicz A, Kakkar AK, Haas SK, Merli G, Knabb RM, et al. ADOPT Trial Investigators. Apixaban versus enoxaparin for thromboprophylaxis in medically ill patients. N Engl J Med. 2011 Dec 8;365(23):2167-77. doi: 10.1056/ NEJMoa1110899.

Gibson CM, Halaby R, Korjian S, Daaboul Y, Arbetter DF, Yee MK, et al. APEX Investigators. The safety and efficacy of full- versus reduced-dose betrixaban in the Acute Medically Ill VTE (Venous Thromboembolism) Prevention With Extended-Duration Betrixaban (APEX) trial. Am Heart J. 2017 Mar;185:93-100. doi: 10.1016/j.ahj.2016.12.004.

Engelen MM, Vandenbriele C, Balthazar T, Claeys E, Gunst J, Guler I, et al. Venous thromboembolism in patients discharged after COVID‑19 hospitalization. Semin Thromb Hemost. 2021 Jun;47(4):362-71. doi: 10.1055/s‑0041-1727284.

Roberts LN, Whyte MB, Georgiou L, Giron G, Czuprynska J, Rea C, et al. Postdischarge venous thromboembolism following hospital admission with COVID‑19. Blood. 2020 Sep 10;136(11):1347-50. doi: 10.1182/blood.2020008086.

Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post- SARS syndrome; a case-controlled study. BMC Neurol. 2011 Mar 24;11:37. doi: 10.1186/1471-2377-11-3.

Hives L, Bradley A, Richards J, Sutton C, Selfe J, Basu B, et al. Can physical assessment techniques aid diagnosis in people with chronic fatigue syndrome/myalgic encephalomyelitis? A diagnostic accuracy study. BMJ Open. 2017 Nov 13;7(11): e017521. doi: 10.1136/bmjopen‑2017-017521.

Kida S, Pantazis A, Weller RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol. 1993 Dec;19(6):480-8. doi: 10.1111/j.1365-2990.1993. tb00476.x.

Montoya JG, Holmes TH, Anderson JN, Maecker HT, Rosenberg-Hasson Y, Valencia IJ, et al. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc Natl Acad Sci U S A. 2017 Aug 22;114(34): E7150-8. doi: 10.1073/pnas.1710519114.

Carruthers BM, van de Sande MI, De Meirleir KL, Klimas NG, Broderick G, Mitchell T, et al. Myalgic encephalomyelitis: International Consensus Criteria. J Intern Med. 2011 Oct;270(4):327-38. doi: 10.1111/j.1365-2796.2011.02428.x.

Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID‑19 and other coronaviruses. Brain Behav Immun. 2020 Jul;87:18-22. doi: 10.1016/j.bbi.2020.03.031.

Pilotto A, Masciocchi S, Volonghi I, Crabbio M, Magni E, De Giuli V, et al.. Clinical presentation and outcomes of severe acute respiratory syndrome coronavirus 2-related encephalitis: The ENCOVID multicenter study. J Infect Dis. 2021 Jan 4;223(1):28-37. doi: 10.1093/infdis/jiaa609.

Gandhi S, Srivastava AK, Ray U, Tripathi PP. Is the collapse of the respiratory center in the brain responsible for respiratory breakdown in COVID‑19 patients? ACS Chem Neurosci. 2020 May 20;11(10):1379-81. doi: 10.1021/acschemneuro.0c00217.

Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID‑19 patients. J Med Virol. 2020 Jun;92(6):552-5. doi: 10.1002/jmv.25728.

Yong SJ. Persistent brainstem dysfunction in long-COVID: a hypothesis. ACS Chem Neurosci. 2021 Feb 17;12(4):573-80. doi: 10.1021/acschemneuro.0c00793.

Lukiw WJ, Pogue A, Hill JM. SARS-CoV‑2 Infectivity and neurological targets in the brain. Cell Mol Neurobiol. 2020 Aug 25:1-8. doi: 10.1007/s10571-020-00947-7.

Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID‑19 in Germany: a post-mortem case series. Lancet Neurol. 2020 Nov;19(11):919-29. doi: 10.1016/S1474-4422(20)30308-2.

Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV‑2 invasion as a port of central nervous system entry in individuals with COVID‑19. Nat Neurosci. 2021 Feb;24(2):168-75. doi: 10.1038/s41593-020-00758-5.

Solomon IH, Normandin E, Bhattacharyya S, Mukerji SS, Keller K, Ali AS, et al. Neuropathological features of Covid‑19. N Engl J Med. 2020 Sep 3;383(10):989-92. doi: 10.1056/NEJMc2019373.

Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID‑19. Kidney Int. 2020 Jul;98(1):209-18. doi: 10.1016/j. kint.2020.05.006.

Chan L, Chaudhary K, Saha A, Chauhan K, Vaid A, Zhao S, et al. AKI in hospitalized patients with COVID‑19. J Am Soc Nephrol. 2021 Jan;32(1):151-60. doi: 10.1681/ASN.2020050615.

Ng JH, Hirsch JS, Hazzan A, Wanchoo R, Shah HH, Malieckal DA, et al. Outcomes among patients hospitalized with COVID‑19 and acute kidney injury. Am J Kidney Dis. 2021 Feb;77(2):204-15.e1. doi: 10.1053/j.ajkd.2020.09.002.

Bucaloiu ID, Kirchner HL, Norfolk ER, Hartle JE2nd, Perkins RM. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int. 2012 Mar;81(5):477-85. doi: 10.1038/ki.2011.405.

Leow MK, Kwek DS, Ng AW, Ong KC, Kaw GJ, Lee LS. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf). 2005 Aug;63(2):197-202. doi: 10.1111/j.1365-2265.2005.02325.x.

Wheatland R. Molecular mimicry of ACTH in SARS — implications for corticosteroid treatment and prophylaxis. Med Hypotheses. 2004;63(5):855-62. doi: 10.1016/j.mehy.2004.04.009.

Pal R, Banerjee M. COVID‑19 and the endocrine system: exploring the unexplored. J Endocrinol Invest. 2020 Jul;43(7):1027-31. doi: 10.1007/s40618-020-01276-8.

Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, et al. Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV‑2 and SARS-CoV. Viruses. 2020 Feb 22;12(2):244. doi: 10.3390/v12020244.

Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV‑2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020 Apr 28;9(1):45. doi: 10.1186/s40249-020-00662-x.

Brancatella A, Ricci D, Viola N, Sgrò D, Santini F, Latrofa F. Subacute thyroiditis after Sars-COV‑2 infection. J Clin Endocrinol Metab. 2020 Jul 1;105(7): dgaa276. doi: 10.1210/clinem/dgaa276.

Ippolito S, Dentali F, Tanda ML. SARS-CoV‑2: a potential trigger for subacute thyroiditis? Insights from a case report. J Endocrinol Invest. 2020 Aug;43(8):1171-2. doi: 10.1007/s40618-020-01312-7.

Asfuroglu Kalkan E, Ates I. A case of subacute thyroiditis associated with Covid‑19 infection. J Endocrinol Invest. 2020 Aug;43(8):1173-4. doi: 10.1007/s40618-020-01316-3.

Lania A, Sandri MT, Cellini M, Mirani M, Lavezzi E, Mazziotti G. Thyrotoxicosis in patients with COVID‑19: the THYRCOV study. Eur J Endocrinol. 2020 Oct;183(4):381-7. doi:10.1530/EJE‑20-0335.

Reis FM, Bouissou DR, Pereira VM, Camargos AF, dos Reis AM, Santos RA. Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil Steril. 2011 Jan;95(1):176-81. doi: 10.1016/j. fertnstert.2010.06.060.

Vaz-Silva J, Carneiro MM, Ferreira MC, Pinheiro SV, Silva DA, Silva-Filho AL, et al. The vasoactive peptide angiotensin-(1-7), its receptor Mas and the angiotensin-converting enzyme type 2 are expressed in the human endometrium. Reprod Sci. 2009 Mar;16(3):247-56. doi: 0.1177/1933719108327593.

Jing Y, Run-Qian L, Hao-Ran W, Hao-Ran C, Ya-Bin L, Yang G, et al. Potential influence of COVID‑19/ACE2 on the female reproductive system. Mol Hum Reprod. 2020 Jun 1;26(6):367-73. doi: 10.1093/molehr/gaaa030.

Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, et al. Gender differences in patients with COVID‑19: focus on severity and mortality. Front Public Health. 2020 Apr 29;8:152. doi: 10.3389/fpubh.2020.00152.

Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016 Oct;16(10):626-38. doi: 10.1038/nri.2016.90.

Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-based differences in susceptibility to severe acute respiratory syndrome coronavirus infection. J Immunol. 2017 May 15;198(10):4046-53. doi: 10.4049/jimmunol.1601896.

Robinson DP, Hall OJ, Nilles TL, Bream JH, Klein SL. 17β-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs. J Virol. 2014 May;88(9):4711-20. doi: 10.1128/ JVI.02081-13.

Wang Z, Xu X. scRNA-seq profiling of human testes reveals the presence of the ACE2 receptor, a target for SARS-CoV‑2 infection in spermatogonia, Leydig and Sertoli cells. Cells. 2020 Apr 9;9(4):920. doi: 10.3390/cells9040920.

Verma S, Saksena S, Sadri-Ardekani H. ACE2 receptor expression in testes: implications in coronavirus disease 2019 pathogenesis†. Biol Reprod. 2020 Aug 21;103(3):449-51. doi: 10.1093/biolre/ioaa080.

Bahadur G, Acharya S, Muneer A, Huirne J, Łukaszuk M, Doreski PA, et al. SARS-CoV‑2: diagnostic and design conundrums in the context of male factor infertility. Reprod Biomed Online. 2020 Sep;41(3):365-9. doi: 10.1016/j.rbmo.2020.05.014.

Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biol Reprod. 2006 Feb;74(2):410-6. doi: 10.1095/biolreprod.105.044776.

Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertil Steril. 2020 Jun;113(6):1135-9. doi: 10.1016/j.fertnstert.2020.04.024.

La Marca A, Busani S, Donno V, Guaraldi G, Ligabue G, Girardis M. Testicular pain as an unusual presentation of COVID‑19: a brief review of SARS-CoV‑2 and the testis. Reprod Biomed Online. 2020 Nov;41(5):903-6. doi: 10.1016/j. rbmo.2020.07.017.

Gagliardi L, Bertacca C, Centenari C, Merusi I, Parolo E, Ragazzo V, et al. Orchiepididymitis in a boy with COVID‑19. Pediatr Infect Dis J. 2020 Aug;39(8): e200-2. doi: 10.1097/INF.0000000000002769.

Fathi M, Vakili K, Aliaghaei A, Nematollahi S, Peirouvi T, Shalizar-Jalali A. Coronavirus disease and male fertility: a systematic review. Middle East Fertil Soc J. 2021;26(1):26. doi: 10.1186/s43043-021-00073-4.

Illiano E, Trama F, Costantini E. Could COVID‑19 have an impact on male fertility? Andrologia. 2020 Jul;52(6): e13654. doi: 10.1111/and.13654.

Song C, Wang Y, Li W, Hu B, Chen G, Xia P, et al. Absence of 2019 novel coronavirus in semen and testes of COVID‑19 patients. Biol Reprod. 2020 Jun 23;103(1):4-6. doi: 10.1093/ biolre/ioaa050.

Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O, et al. Assessment of SARS-CoV‑2 in human semen-a cohort study. Fertil Steril. 2020 Aug;114(2):233-8. doi: 10.1016/j.fertnstert.2020.05.028.

Chee YJ, Ng SJH, Yeoh E. Diabetic ketoacidosis precipitated by Covid‑19 in a patient with newly diagnosed diabetes mellitus. Diabetes Res Clin Pract. 2020 Jun;164:108166. doi: 10.1016/j.diabres.2020.108166.

Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID‑19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab. 2020 Oct;22(10):1935-41. doi: 10.1111/dom.14057.

Ren H, Yang Y, Wang F, Yan Y, Shi X, Dong K, et al. Association of the insulin resistance marker TyG index with the severity and mortality of COVID‑19. Cardiovasc Diabetol. 2020 May 11;19(1):58. doi: 10.1186/s12933-020-01035-2.

Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004 Jun;203(2):631-7. doi: 10.1002/path.1570.

Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010 Sep;47(3):193-9. doi: 10.1007/s00592-009-0109-4.

COVIDIAB registry. Available from: https://covidiab.edendrite. com/index.html [Accessed 25th Sept 2021].

Amato MK, Hennessy C, Shah K, Mayer J. Multisystem inflammatory syndrome in an adult. J Emerg Med. 2021 Jul;61(1): e1-3. doi: 10.1016/j.jemermed.2021.02.007.

Belot A, Antona D, Renolleau S, Javouhey E, Hentgen V, Angoulvant F, et al. SARS-CoV‑2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May 2020. Euro Surveill. 2020 Jun;25(22):2001010. doi: 10.2807/1560-7917.ES.2020.25.22.2001010.

Morris SB, Schwartz NG, Patel P, Abbo L, Beauchamps L, Balan S, et al. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV‑2 infection — United Kingdom and United States, March-August 2020. MMWR Morb Mortal Wkly Rep. 2020 Oct 9;69(40):1450-6. doi:

15585/mmwr.mm6940e1.

Toubiana J, Poirault C, Corsia A, Bajolle F, Fourgeaud J, Angoulvant F, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid‑19 pandemic in Paris, France: prospective observational study. BMJ. 2020 Jun 3;369: m2094. doi: 10.1136/bmj.m2094.

Whittaker E, Bamford A, Kenny J, Kaforou M, Jones CE, Shah P, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV‑2. JAMA. 2020 Jul 21;324(3):259-69. doi: 10.1001/ jama.2020.10369.

Roe K. A viral infection explanation for Kawasaki disease in general and for COVID‑19 virus-related Kawasaki disease symptoms. Inflammopharmacology. 2020 Oct;28(5):1219-22. doi: 10.1007/s10787-020-00739-x.

Sollini M, Ciccarelli M, Cecconi M, Aghemo A, Morelli P, Gelardi F, et al. Vasculitis changes in COVID‑19 survivors with persistent symptoms: an [18F]FDG-PET/CT study. Eur J Nucl Med Mol Imaging. 2021 May;48(5):1460-6. doi: 10.1007/s00259-020-05084-3.

Zhou M, Yin Z, Xu J, Wang S, Liao T, Wang K, et al. Inflammatory profiles and clinical features of COVID‑19 survivors three months after discharge in Wuhan, China. J Infect Dis. 2021 Apr 4: jiab181. doi: 10.1093/infdis/jiab181.

Kucuk A, Cumhur Cure M, Cure E. Can COVID‑19 cause myalgia with a completely different mechanism? A hypothesis. Clin Rheumatol. 2020 Jul;39(7):2103-4. doi: 10.1007/s10067-020-05178-1.

Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The high costs of low-grade inflammation: persistent fatigue as a consequence of reduced cellular-energy availability and nonadaptive energy expenditure. Front Behav Neurosci. 2018 Apr 26;12:78. doi: 10.3389/fnbeh.2018.00078.

Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, et al. SARS-CoV‑2 productively infects human gut enterocytes. Science. 2020 Jul 3;369(6499):50-4. doi: 10.1126/ science.abc1669.

Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV‑2. Gastroenterology. 2020 May;158(6):1831-33.e3. doi: 10.1053/j.gastro.2020.02.055.

Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, et al. TMPRSS2 and TMPRSS4 promote SARSCoV‑2 infection of human small intestinal enterocytes. Sci Immunol. 2020 May 13;5(47): eabc3582. doi: 10.1126/sciimmunol.abc3582.

Завантаження

Дані завантаження ще не доступні.